

Correlating longitudinal single-cell analyses with populational biochemical assays using microfluidics <u>Théo ASPERT¹</u>, Gilles CHARVIN¹

¹Single Cell Biophysics, Institut de Génétique et de Biologie Moléculaire et Cellulaire - FRANCE

-eedbacks: https://taspert.aithub.ic theo.aspert@gmail.com

In a hurry?

🖌 Scan me!

Budding yeast has an asymmetrical division pattern and a limited replicative lifespan: mother cells undergo about 20 - 30 rounds of division before dying. However, daughters of ageing mothers recover a full replicative lifespan (rejuvenation). Therefore, mother cells are thought to accumulate and retain 'aging factors', which become toxic and cause senescence.

1) Old cells are rare in a growing population

At each round of division, the number of cells doubles with rejuvenated individuals, diluting the old cells. After N divisions, 2^{N} cells and only one of age N. eg: In 1mL (10⁸ cells), one cell of age 25, two cells of age 24,... and 5.10⁷ cells of age 0

2) Most cells follow a common pathway to senescence...

Using timelapse microscopy, our group showed that **budding yeast sharply slows down its division time** after a variable number of divisions (Senescence Entry Point=SEP) [1]. This correlates with an increase of the nucleus volume and is followed by death. More recent work [2] showed that this abrupt change of physiology was caused by Extrachromosomal rDNA Circle (ERC) excision. ERCs are repeats from the rDNA locus that can replicate, leading to an amplification at each division and their **accumulation** is concommitant with

Once the cells reached a threshold amount of ERCs, the SEP is triggered and and number of various phenotypes appears. The later an event

From [1]

3) ... but the senescence dynamics are highly variable among an isogenic population

HOW TO STUDY REPLICATIVE SENESCENCE FROM A HETEROGENEOUSLY SENESCENT POPULATION?

How is the upregulation of nucleolar activity causal for the loss of nuclear homeostasis and entry into senescence? Are the commonly described aging pheotypes causes or byproducts of SEP? Refining our model of senescence requires approaches complementary to timelapse microscopy, which demands populations of cells from each step of the senescence pathway. To this end, we propose a new framework based on microfluidics and FACS, to culture and harvest old cells, before sorting them according to their senescence stage.

PRODUCE, SORT AND ASSESS OLD CELLS

SUMMARY OF THE METHOD

GOAL: Assay synchronized populations regarding senescence, at different stages

Use of a microfluidic system to (A) trap and age mother cells inside specific structures that automatically remove the progeny.

(B) Harvesting of the old cells from the traps with a negative flow.

(C) FACSorting to synchronize cells in population of the same senescent age (using fluorescent) markers).

(D) Finally, standard methods (transcriptomic, tomography...) are applied on the categories to characterize each stage and temporally order events.

D) AND NOW, WHAT TO ASSESS?

The system automatically get rid of the progeny, keeping only aging mothers: the population ages.

B) HARVESTING THE AGED POPULATION

SUMMARY

- → Senescence occurs **sharply** in budding yeast, mechanisms are unknown.
- -> A common pathway of senescence seems to be shared by most of the cells implying Extrachromosomal rDNA Circle excision and amplification...
- Quantitative microscopy allows to observe senescence longitudinally but complementary techniques are required to better characterize each step of the process.

DEVELOPMENT OF A METHOD TO PRODUCE SYNCHRONIZED SENESCENT CEL BASED ON MICROFLUIDICS AND FACS

Once the categories representing different senescence stages are isolated, we can assess different readouts on them, to gain insight into the actors of the senescence pathway and their dynamics.

What triggers nucleolar overactivity? ERCs deregulate the RNA pol1 activity? >Expression of transcription machinery VS ERCs levels with qPCR.

How is it relayed to the nucleus, inducing a global loss of homeostasis and eventual death?

Why does nuclear content globally increase? Are the NPCs clogged or malfunctional? > FIB-SEM.

Cause or byproduct of SEP: where stand the commonly described events? Loss of nucleosomes and chromatin silencing > ATAC-seq. Genomic instabilities, sterility, ribosomal processing.

Validated assays: Transcript levels by qRT-PCR ERCs levels by qPCR

REFERENCES

[1] Aging yeast cells undergo a sharp entry into senescence unrelated to the loss of mitochondrial membrane potential. Fehrmann S, Paoletti C, Goulev Y, Ungureanu A, Aguilaniu H, Charvin G. Cell Rep. 5(6):1589-99, 2013 [2] Excessive rDNA transcription drives the disruption in nuclear homeostasis during entry into senescence in budding yeast Morlot S, Jia S, Léger I, Matifas A, Gadal O, Charvin G. Cell Rep, (28)2:408-422, 2019